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We study a convergence exponent c~ of multidimensional continued-fraction 
algorithms (MCFAs). We provide a dynamical systems interpretation for this 
exponent, then express a general relation for the exponent in terms of the 
Kolmogorov-Sinai (KS) entropy and smallest eigenvalue of the associated shift 
map. We consider the case of approximating two irrationals and demonstrate 
the numerical method for using the smallest eigenvalue and entropy to evaluate 
c~ for several MCFAs, including Jacobi-Perron and GMA (generalized mediant 
algorithm). On very general grounds, the bounds for this exponent (for two 
irrationals) are 1 ~<~< 3/2= 1.5. The upper bound is attained for algorithms 
with best approximation properties. We find ~GMA = 1.387 and ~w = 1.374, as 
well as the values for the KS entropy and Oseledec eigenvalues. 
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1. I N T R O D U C T I O N  

In a recent work, we thoroughly investigated a multidimensional con- 
tinued-fraction scheme. (11 This algorithm, the generalized mediant algo- 
rithm (GMA), has a natural geometric interpretation. Moreover, the algo- 
rithm possessed the pleasant feature that we could explicitly solve for the 
invariant measure and also the Kolmogorov-Sinai  entropy for the GMA 
no matter how many irrationals are to be approximated. This gave, in turn, 
an analytical form for the growth rate of denominators. In this work, we 
investigate other metric properties of the GMA as well as metric properties 
of the Jacobi-Perron algorithm. Both these algorithms share certain 
features in common: both algorithms give rise to ergodic shift mappings 
with absolutely continuous invariant measures. Both Euclidean algorithms 
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can be built from applications of elementary shear matrices (see Proposi- 
tion 4). For  the present exposition, we consider primarily the case of 
simultaneously approximating two irrationals and limit ourselves to the 
question of a well-known convergence exponent. We demonstrate that the 
convergence exponent e yields important information on the quality of 
approximations. 

In Section 2, we define the exponent ~ and give a dynamical systems 
interpretation for it. Known elementary mathematical results on e are 
briefly reviewed. We also state a theorem that algorithms with common 
subsequences share the same e. Thus, ~ is independent of the parametriza- 
tion of the converging sequence. 

In Section 3, we define the shift map associated with this approxima- 
tion sequence. In order for a sequence of convergents to attain the maximal 
(optimal) c~, there must be a relation among the eigenvalues of this same 
shift. We state this condition: all eigenvalues of the shift be identical. We 
also review the algorithms for which we calculate e - - the  Jacobi-Perron 
algorithm (and its ordered version) and the GMA. 

In Section 4, we present our numerical method for calculating e for 
the approximation of two irrationals. The method is based on a familiar 
algorithm for calculating Lyapunov exponents in dynamical systems theory 
(such as billiards)/1~ We present numerical results for ~ for both the 
GMA and the Jacobi-Perron algorithms for the approximation of two irra- 
tionals. There are several significant observations. Foremost, we note that 
this exponent lies between 1 and 3/2. Since the optimal sequence of con- 
vergents to a generic pair of irrationals is known to have an exponent 3/2, 
then one should infer from the numerical simulations that both the GMA 
and JP algorithms list nonoptimal convergents (see also ref. 2). In some 
sense, we should say that the GMA is a better algorithm, since its value 
for c~ lies closer to the optimal value of 3/2. Section 5 is a discussion and 
conclusion. The Appendix provides a proof for Proposition 4 of Section 3. 

2. A D Y N A M I C A L  S Y S T E M S  I N T E R P R E T A T I O N  OF THE 
C O N V E R G E N C E  E X P O N E N T  c= 

Suppose we are given a d - 1  ordered vector of increasingly ordered 
irrational numbers 1"~= (e) r ..... co~d 1)),  0<co  ~1)< .. .  <~o ~d-1). We 
may write down a similarly ordered set of d-dimensional integer vectors 
Pn = (A ..... , Yn, Zn), which may be used to construct an approximation to 
the vector of irrational numbers ~ by writing 

1"~ n = ( A , / Z  . . . . . .  Y n / Z , )  (2.1) 
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Suppose there exists a prescription for measuring the distance between 
the vector ~n and ~:  

dis t (~, ,  f~) (2.2) 

For a wide class of distance functions dist, it is known that exist sequences 
1"~ n such that 

1 
dist(~n, 1"~) oc - -  (2.3) 

for some exponent :~. Here I"1 denotes the usual Euclidean norm. For 
certain sequences, the value of ~ attains its maximum of d / ( d -  1). [We 
shall state (2.3) more precisely later.] This is a well-known result in 
number theory. 

In this section we would like to give a dynamical systems interpreta- 
tion to this result. Toward this purpose, it is useful to consider first several 
examples. 

Example 1. Linear Difference Equations. We wish to consider 
approximation methods resulting from the study- of linear difference 
equations. Consider a d th-order linear difference equation 

L , + a + a l L , , + d _ l  + . . .  + a a  1 L n + l - L . = 0  (2.4) 

where the coefficients ai are integers, with certain conditions among them, 
which we state explicitly later [see (2.8) (2.11)]. Consider a d-dimensional 
integer vector P,  = (A ...... Y,, Z,),  where each integer entry (such as Bn) is 
to separately obey the linear difference equation (2.4). Consider a ( d -  1)- 
dimensional vector ~n that is to be formed as in Eq. (2.1). We are 
interested in the convergence properties of ~n to its limit ~.  

In order to evaluate the expression (2.2), we must first specify a dis- 
tance function. [The exponent c~, which we are about to calculate as in 
(2.3), will be insensitive to the type of norm we choose, for all the com- 
monly studied norms; only the prefactor changes.] To each (d-1)-dimen-  
sional vector A = (~ol,..., ~od 1) one may uniquely assign a ray in d-dimen- 
sional space pointing in the (~Ol ..... cod_l, 1) direction. Given a pair of 
vectors (A, B), one may uniquely define (in d-space) a plane containing 
each of two rays (with common vertex at the origin). We define the 
distance between the ( d -  1)-vectors as the sine of the angle between these 
rays on the two-dimensional plane embedded in the d-dimensional space. 
Expressed solely in terms of the original (d-1)-dimensional  vectors, one 
has 

F - -  B) 2 + A 2 B  2 -- (A" B)2~ 1/2 
disto(A, B ) =  ( A  

i- ~--~ ~ + ~ - A - 2 ~ T  
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One finds by explicit calculation 

lim IP,,[ ~ dist0(O., (2)  = Wi11 + ~ / 2 [ d e t ( ~ / 2 ) ]  2 
n ~ o o  

(2.5) 

in 11/721 
~ = l + - -  

In I?ll 
(2.6) 

Here we have defined a self-adjoint matrix 

W =  (M-1)T(Ho)T HoM l (2.7) 

W2 is the upper 2 by 2 block of W, and Ho is the initial (integer) data of 
the linear difference equation: I-t% = Aj, H % =  Bj, etc. The matrix M is the 
familiar Van der Monde matrix of linear algebra: Mkt= ?~ i. The {?i} are 
roots of the characteristic equation 

7 a - a d  1~ )d 1 - -ad_2~d-2  . . . . .  1 = 0  (2.8) 

and the integers ai [see (2.4)] are such that the Eq. (2.8) is factored 

d 

I J  (~ - 7,) = 0 (2 .9)  
i = 1  

with 

4~11 > 1 > IW21 > "" • lTd[ (2.10) 

The exponent c~ given by 2.3 is the same as that given by Hua and Yuan. (3) 
The exponent is insensitive to the type of distance function studied so 
long as the distance (metric) function gives rise to the usual topology. 
Comparing (2.8) and (2.9), one also notes 

d 

l~I I~,1 = 1 (2.11) 
i = 1  

There are three important features to be noted from (2.6). The first is 
that the exponent e involves only the largest two roots of the difference 
equation. The second feature is that due to Eqs. (2.10), (2.11), we must 
have 

d 
1 < ~ ~< d-~--l (2 .12)  

Also observe that ~ = d / ( d -  1) if and only if [~21 . . . . .  ITd[ = 1/['Yl[ 1/(d 1) 
The third feature is that if we take a subsequence of the original list of 
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convergents, the exponent e remains unchanged. For  example, suppose 
that instead of taking as a list of convergents the sequence ~ , ,  we took 
every other convergent and listed ~2n. The new roots would be simply the 
squares of the roots of the original equation, and would thus leave (2.6) 
unchanged. 

Can we give a simple geometrical picture to the exponent c~? Consider 
successive integer convergents P , , P , + x  ..... P ,+d  1 and the points 
corresponding to those vectors in d-dimensional space. Since their slopes 
(with respect to the Z axis) must limit onto a constant ~ ,  then the Pn 
become stretched along the line (~, 1). Consider the d-dimensional object 
(simplex) formed by the origin and these d vertices (in two dimensions a 
triangle, in three dimensions a pyramid). Obviously this simplex is being 
stretched so that it contracts upon the line in the direction (~, 1). The eigen- 
value governing this stretching is 7x. Since the products of the roots are 
unity, the stretching is a shear and the volume of the primitive simplex is 
a constant. 

There is also a direction in which the elementary simplex most slowly 
converges upon the line. This contraction is governed by the eigenvalue 72- 
The quantity e is a measure of the rate of this slowest mode of contraction 
divided by the rate of stretching. Obviously if the contraction is isotropic 
(all the conjugate roots 7i, i #  1, are equal in norm) then e attains the 
maximum value of d / ( d -  1). The following theorem would imply that the 
true listing of optimal convergents gives an isotropic behavior, and the 
convergence is fast, since c~ attains its maximum possible value. 

Before we proceed farther, we give a more precise definition of best 
convergents. 

Def in i t ion  1. Best convergents. Let dist be a distance function 
for finding distances between ( d -  1)-dimensional vectors (with entries less 
than 1). We say a set of integers P ,  is a best convergent (wrt the function 
dist) to an ordered vector f2(co x ..... cod), 0 < cox < "'" < cod , < 1, if, writing 
Dn = (An/Z ...... Yn/Zn), then dist(Dn, f2) is smaller than any dist(f2', ~) ,  
where f2' is formed from a d-dimensional (ordered) integer vector with 
Euclidean norm less than [Pn[. Thus, there are no integer points closer 
to the origin in d-space that yield a smaller value for dist(f2n, ~ )  than 
does P , .  

Proposi t ion  1. For almost all irrational vectors f2, there exists a 
sequence of best convergents f2. (with an associated Pn) such that 

- I n  dist([l~, ~ )  d 
lim = 0~ma• = (2.13) 

~ ~ In IP~I d -  1 
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This is a corollary to a famous theorem of Dirichlet on simultaneous 
Diophantine approximations. (7) Considering Definition 1 and Example 1, 
the following becomes clear. Even in the case where a vector of irrationals 
(2=  (col ..... end_l) can be constructed from such a linear difference equa- 
tion, this construction does not necessarily yield best approximations. So 
the situation is extremely complicated. 

There is one situation in which linear difference equations may yield 
best approximations to an irrational and that we consider in the following 
example. 

Example 2. Convergence to a Cubic Irrational with Complex 
Conjugate Roots .  Consider a linear difference equation 

L,, + 3 -Jr- aL,, + 2 + bL.  + 1 - L.  = O; 

with a characteristic equation 

V 3 - b 7  2 - a 7 -  1 = 0  

l a+  II ~ I b -  11 (2.14) 

(2.15) 

such that the roots of this characteristic equation are {7i} with 
tT~J > 1 > J72J = J731. That  is, there is one real root and a complex conjugate 
pair of roots. Obviously from Eq. (2.16), 717273 = 1, so that ]72[ = [73[ = 
1/[7111/2. Suppose then we wish to construct rational approximants to the 
vector (2=  (1/712, 1/71). Using P , =  (Ln, L , + I ,  L,+2)  and (2 ,=  (L , /L ,+2 ,  
L ,+ 1/L,+ 2), from (2.6) we see that ct attains its maximum value: 

in 11/~21 3 
= 1 + - -  (2.16) 

In 1711 2 

Thus the approximations ~ ,  yielded by the simple linear equation may be 
best (e = 3/2 is a necessary, but not sufficient condition). 

Out goal in this paper is calculate the e's for different MCFAs. This 
will characterize immediately the quality of the convergents it produces. 

We next state an elementary proposition concerning subsequences of 
convergents. 

Proposi t ion 2 (Reparametrization Invariance). Consider a sequence 
of rational convergents { ~ , } [ a ( d - 1 ) - v e c t o r ]  formed from integer 
d-vectors Pn = (An,..., Y,, Z,) ,  by writing ~ ,  = (An/Z,,. . . ,  Y J Z , ) .  Suppose 
the following limit exists: 

- l n  dis t (~ , ,  f~) 
lim - ~ (2.17) 

. ~  co in IP.[ 

Then subsequences of {~ .}  have the same ~. 
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The proof is simple: let f2ij be a subsequence of the sequence {f2~}, 
where il, i2 .... is a positive, strictly increasing sequence of integers. Then 
define c~j- - l n  dist(ILj, ~) / ln  IPijl. Since the limit in (2.17) converges to 7, 
then any subsequence such as c~j also converges to c~. 

We will demonstrate an example of Proposition 2 numerically in 
Section 4. 

3. E R G O D I C  C O N T I N U E D  F R A C T I O N S  

In order to calculate c~ for an additive continued-fraction-type map, it 
is convenient to examine the corresponding shift of that map. For example, 
for the approximation of single irrationals, it is known that the ordinary 
continued-fraction algorithm satisfies all the best approximation properties 
(it lists the good convergents). In that case, d = 2  and one calculates 
2 1 2 2  = 1, c~= 1 +In  ll/221/ln I~-~[ =2,  so one necessary condition for best 
approximation sequences is trivially satisfied. 

It is not difficult to relate the eigenvalues 2~ ..... 2a of the Euclidean 
algorithms to the eigenvalues of the shift mappings. This has been discussed 
in a previous work by the author. (1) 

D e f i n i t i o n  2. Associated shift of a Eucfidean algorithm. Suppose 
the ordered sequence of convergents P ~ = ( A  ..... , Y , , Z , )  with A,~< 
B, ~< ... is formed by writing 

P.r i~.P; (3.1) 

where the matrix k, is a matrix with determinant one with nonnegative 
integer entries and having one Oseledec eigenvalue 2~ with norm greater 
than unity and all other eigenvalues with norm less than unity. We call the 
procedure for constructing Pn the Euclidean algorithm. Suppose there is a 
well-defined mapping T defined on the rationals by 

T(-~" ,..., Y__~ ) =  (A_~ ~_ 1 ,..., 7LnY'-:)_ (3.2) 

The mapping T is called the shift map. 

R e m a r k  1. For the cases we consider, T may be extended to the 
irrationals in a straightforward way. 

P r o p o s i t i o n  3 (Oseledec (4) Eigenvalues of the Shift). Let T 
be an ergodic mapping of a subset X of the ordered simplex, 
0 <<. Xl <<.... <<.Xd_~ ~< 1 to itself, and admitting an absolutely continuous 
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invariant measure. If T is the associated shift of a Euclidean algorithm 
as described in Definition2, then the eigenvalues of T are given 
by {0.i} i= l ' ' d  1 with ~ i = 2 1 / ) ~ a _ i + 1 ,  where 2 i>1>;~2>~. - -~>2a  are 
assumed to be the eigenvalues of the Euclidean algorithm. Thus 
0"1/>0-2/> .. .  ~>0" a 1>1. 

We refer the reader to ref. 1. The heart of this paper is contained in the 
following proposition. 

P r o p o s i t i o n  4. Consider a Euclidean algorithm with Oseledec 
eigenvalues, 21 > 1>22>~ .-. ~>2a. Suppose it has an associated shift 
(Definition 2) which is ergodic on its invariant set. Then 

- I n  dist(f~., f~) in 11/22t 
lim = ~ = 1 + - -  (3.3) 

,~oo In ]P.I  In I~11 

The proof is given in the Appendix. This gives us a way to study the 
convergence exponent c~ by studying the associated shift. Why? Because 
Eq. (3.3) gives an expression for ~ which can be reexpressed in terms of 
quantities which we can measure from doing a numerical study of the shift, 
as we will now proceed to show [see (3.11)]. That is the most important 
point of our paper. 

Note from Proposition 3 that all the 0-i are >1. Thus, due to a 
theorem of Pesin, (8) it is easy to relate the KS entropy of the shift to the 
largest eigenvalue of the Euclidean algorithm: 

d = l  d 

h =  ~ l n ~ i = d l n 2 1 - 1 n  IF[ 2 i = d l n 2 1 - 1 n 1 = d l n 2 1  (3.4) 
i = l  i = l  

This result is consistent with those of Schweiger. (6) 

P r o p o s i t i o n  5. The KS entropy of an ergodic shift mapping T is 
related to the largest eigenvalue 21 of the Euclidean algorithm by 

h = d l n 2 1  (3,5) 

Example 3. The Ordinary Continued Fraction (OCF). For the 
OCF, the above calculations are straightforward. The OCF shift map reads 

1 1 
T ( X ) = x -  [ x  ] (3.6) 

which supports the invariant measure 

1 1 
- - -  - -  d x  (3.7)  d # ( x )  l n 2 1 + x  



Cont inued-Fract ion A lgor i thms 1 515 

The KS entropy is straightforward to calculate: 

~T(x) ~2 
h = I d#(x) In = 

d #x 6 In 2 
( 3 . 8 )  

Using d =  2, (3.5) and (3.8) imply 
~2 

In  21 - -  - -  
121n 2 

(3.9) 

meaning that the denominators Z ,  grow in such a manner that 

In Z .  ~2 
lim - -  ~ (3.10) 

. . . .  n 121n 2 

which is a well-known result. 
In recent years, there have developped a great many ways to calculate 

the largest (or smallest) eigenvalues (exponents) of ergodic mappings. We 
can conveniently express the convergence exponent c~ in terms of the eigen- 
values of the shift. Using Propositions 4 and 5, we are lead to the following 
result. 

Proposition 6. The convergence exponent c~ may be expressed in 
terms of the KS entropy and the smallest exponent of the shift as 

In 0"d ! 
a = d - -  (3.11) 

h 

(recall the ordering o f  t h e  r o o t s  a l  ~> 0"2 f> - "  /> o"d-- ! > 1 ). 

ProoL Now 

c t = l +  - -  ln(1/22) l n ( 2 1 / 2 2 ) - d l n ( ) q / 2 2 ) l n  21 In 21 d In 21 d (In ha i ) -  

The last equality follows from Propositions 4 and 5. 

Proposition 7. The exponent ~ obtains its maximum value if and 
only if all the eigenvalues of the shift are equal (which in turn holds if and 
only if all the d - 1  eifenvalues of the Euclidean algorithm, which are less 
than one, are equal). 

Proof. Starting from Proposition 3, we know 
d i 
I - I  , ,  = 2 ~ - 1 / ( 2 2 . . .  2 d )  = 2 f / ( 2 1  . . .  2d )  = 21 ~ = e h 

i--1 
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Thus, if all the a's are equal, then cr a ~=e h/(a-~). Using (3.11), then we 
recover the maximum value for ~, d / ( d -  1). This is the value which charac- 
terizes algorithms with best approximation properties. 

The entropy h is not difficult to calculate numerically for an expansive 
mapping such as the shift (for a system with both positive and negative 
Lyapunov exponents, it is numerically not easy). The largest (or smallest) 
Lyapunov exponent is also not difficult to calculate numerically (it is the 
other exponents that can be numerically quite challenging to evaluate). 
Thus we have expressed the convergence exponent ~ in terms of quantities 
which are not difficult to evaluate numerically, since Proposition 3 ensures 
that the mapping is expansive. 

In Section 4, we proceed to calculate c< for the following algorithms. 

The G M A  Algor i thm.  This algorithm has been discussed at length 
by the author in a recent work. (1) The Euclidean algorithm is given, for d 
integers, by 

(An l, Bn 1 ..... Y ~ - I , Z . - I )  

= A . , Z . - A . , B  ...... Y.  for A . < ~ Z n - A  . (3.12) 

= Z . - A . , A . , B  ...... Y.  for A . > Z . - A .  (3.13) 

The associated shift map on I = d -  1 irrationals is 

T(a ..... z ) = (  a 1 - a  z ' z - ' " " x ' Y )  for a~<�89 

.1--~ a , b  x, for ~ < a < l  (3.14) - -  , - - , . . . ,  

Z Z 

depending on the relative magnitude of a and 1 - a .  
This shift map supports an invariant measure on an invariant set 5~ 

defined by 

l > z >~ y >~ . . .  >~b >~a >~ l - b  (3.15) 

The invariant measure is given by 

1 da dz 
. . . . . . .  (3.16) dp(a, b ..... y, z) norm(l)  a z 

where the normalization constant may be explicitly calculated as 

f ~ d t  [In(1 + t)] ~-1 
norm(I) = --  (3.17) 

t (I-- 1)! 
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The Kolmogorov-Sinai entropy may also be conveniently expressed in 
terms of I and norm (I) 

no rm( I+  1) 
h(I) = ( I +  1) (3.18) 

norm(I) 

The GCFP Algorithm. We mention an algorithm which lists con- 
vergents which are a subsequence of those listed by GMA. The GCFP 
Euclidean algorithm is such that it uses enough applications of GMA until 
the lowest entry is changed. For I =  2 = d -  1, the GCPF shift reads 

) [1] 
r(x, y ) =  k = = (3.19) 

y + x - k x '  y + ~ - k x  ' 

_(y+x-kx___x_kx, l+x_kxX) ,  k = I 1  ] = 1 + [  y ]  (3.20) 

An analytical form for the invariant measure and entropy of GCFP are 
unknown. 

The Jacobi-Perron Algorithm. The multidimensional continued- 
fraction scheme which has been most studied has been the Jacobi Perron 
algorithm. The Euclidean algorithm reads 

(A',..., Z ' )= ( B - k B A  ..... Z - k z  A, A) (3.21) 
where 

ks= [B/A], etc. (3.22) 

The associated shift for two irrationals reads 

T(x, y )= - ' x 

An analytical form for the invariant measure is unknown. 

(3.23) 

The Jacobi-Perron Algorithm (Ordered Version). This 
reads precisely the same as the JP except that after each iteration the 
entries are reshuffled to run from smallest to largest, 

(A', .... Z ' )  = ordered(B-k~A ..... Z - k z A ,  A) (3.24) 

For two irrationals, the associated shift reads 

y ,1 1 
(3.25) 
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Both ordered and unordered versions give ergodic transformations on the 
unit simplex. What is called conventionally the Jacobi-Perron algorithm by 
other authors is the unordered version presented in (3.21) above. 

In Section 4, we investigate numerical procedures to calculate c~ via 
(3.11). 

4. N U M E R I C A L  PROCEDURE,  R E S U L T S - - G M A ,  JP, GCFP 

In order to calculate (3.11) for different ergodic fractional linear trans- 
formations, we need to calculate the entropy and the smallest eigenvalue of 
the shift ~d-1. In this section we present results for the algorithms (JP, 
GMA, GCFP)  for two irrationals ( I = 2 ,  d = I +  1 = 3). 

If a shift map has all eigenvalues greater than one (such as the ergodic 
shifts described above), then the entropy is numerically very easy to 
calculate (even if the invariant measure is unknown). Let J represent the 
Jacobian of the map T, and J+ the Jacobian of the expanding subspace of 
T; we have 

= f dl~(x)In detiJ+ I = f dl~(X)In detlJI (4.1) h 

since the expanding subspace is precisely the same as the entire space (all 
exponents are positive). Equating time and phase averages via the Birkhoff 
ergodic theorem, one writes 

h = lim l l n  det J (T ' (x ) l (x ) )  
M ~ o o  m 

= lim --1 ~ l n d e t J ( T , ( x ) l T , _ l ( x )  ) (4.2) 
m ~ o o  m 

n = l  

Observe that h is the sum of scalar quantities evaluated at each time step. 
This means we can numerically evaluate h without having to diagonalize 
matrices with large entries. 

For d = 3  ( I=2) ,  we can reexpress c~ via (3.11) and (2.11) in terms of 
the entropy and the largest eigenvalue of the shift map [(3.11) involves the 
smallest eigenvalue]. A simple calculation shows 

,43  

(Note that this is a simplifying feature of d =  3.) Since the largest eigen- 
value of a mapping is not difficult to evaluate numerically, (5) (4.3) means 
we can numerically evaluate ~ without having to diagonalize matrices with 
large entries. 
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We calculate al ,  the largest eigenvalue of the GMA shift, via a proce- 
dure due to Kubo ~ and implemented successfully in many examples. (l~ 
We suppose (So, 0(s0)) is the curve designating the locally unstable fiber 
passing through the point (x0, Yo) in the two-dimensional phase space of 
an ergodic shift T. Let (sl, 0(s~)) be the image of that point under T. 
Elementary calculations yield 

ds l  8s  I 8s1 dOo (4.4) 
dso ~So + 8Oo dso 

and 

dO o _ 80o/~S-2 I o 1 + 80o/80 - ~ Is 1 dO _ ffds _~ (4.5) 
dso 8So/SS_ 1 Io_1 + ~So/SO _ ~ I, ~ dO_  r ids_ 

In Eq. (4.5), the collision data immediately prior to (So, 00(s0)) enter the 
expression as well. 

The largest exponent of the shift In 41 is given by 

1 dsl (4.6) In 41= j d # ( x ) n  
ds---o 

= lim 1 ~ In ds----5-~ (4.7) 
M~o~ M ,= 1 d s , _ l  

As a remarkable consequence of the Birkhoff ergodic theorem, we may 
begin our numerical simulation with an arbitrary value of d O_ 1/ds_ 1, and 
carry out the prescription for solving for ~r 1, according to (4.4)-(4.7). 

We still would like to tabulate more clearly our expressions for (4.2), 
(4.3), and (4.7). For a 
T ( x , _ l ,  Yn-1).  We use 

dSn+ 1 

ds, 

dO.  

ds, 
with 

two-dimensional map, then (x,, y , ) =  

d•l n 
- a n + l + C . + m  ds.  (4.8) 

b. + dn dO . _ ff dSn_ l 
D 

an + c.  dO ._  ff ds ._  l 

~X n m ,  
an = 0 ~X n 1 

(4.9) 

8y n 8x~ By, 
bn - ; c, - ; dn = (4.10) 

8xn-1 @, 1 c~Yn-1 

det J , - - l and~-bncn l  (4.11) 

h = lim 1 M~ oo M ln[-det J(T"(x))]  (4.12) 
n = l  

ln a l =  lim --1 ~ ln - -ds~  (4.13) 
M ~ o ~ M  dsn 1 n = l  

822,'66/5-6-22 
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We evalua te  the quant i t ies  an, bn, Cn, dn, and  Jn for the afore- 
m en t i onned  maps  before we present  our  numer ica l  results. 

GMA. 

Also, 

F o r  the G M A  we find 

x < 1/2 x > 1/2 

an+l  = 1/Yn = b n + t  

b n + l  = - 1 / y n  = a n + l  
cn + 1 = - x n / y n  = dn + l 

d.+, = -(1 - x . ) / y .  = c . + 1  

1 
Idet Jnl  - 3 

Yn 
(4.14) 

Jacobi-Perron (Ordered Version). F o r  JP  one finds 

{y./x~ < {1/x.} {1/xn) < {y./xn} 

Also, 

an + 1  ~ - - Y n / x ]  =- bn + 1 

b . + l  = - 1 / x ]  = an+ 1 

Cn+ 1 ~ 1 I x  n ~ d n +  1 

d n + l = 0  = C n + l  

1 
Idet Jn[ = 7 5  (4.15) 

X n 

Jacobi-Perron. This is the unorde red  vers ion of the above  algo-  
r i thm. Its J acob ian  e lements  are given by the lef t -hand co lumn of 4.15: 

an+ 1 - -  
Yn 1 1 1 

. 2 ;  b n + l =  - ~ ;  Cn+l ~ - - - ;  d , + l  = 0 ;  [det Jn[ - 3 
X n X n X n X n 

GCFP. F o r  G C P F  one finds for [ l / x ]  = [ y / x ]  

a . +  1 = [ - 1 + k(1 - y ) ] / d e n  2 

b .  + 1 = Y/den2 

c .+1 = - ( 1  - k x ) / d e n  2 

d.  + 1 = - x/den2 

(4.16) 



Continued-Fraction Algorithms 

where 

k =  

and also 
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[ 1 1 ,  d e n = x +  y - k x  

1 
Idet Jnl - den 3 (4.17) 

Fo r  [1 /x ]  = [y/x] + 1 (the only other  possibility, since x + y > 1), 

a ,  + 1 = (Y - 1 )(k - 1 )/den 2 

bn+l  = 1/den2 

cn + 1 = 1/den 

dn+ l - -O  

where 

and 

d e n = x +  1 - k x  

1 
Idet J , I  = den 3 (4.18) 

5. D I S C U S S I O N ,  C O N C L U S I O N  

Using the procedure  outl ined in Section 4, we have evaluated numeri-  
cally the largest eigenvalue of the Euclidean a lgor i thm and the convergence 
exponent  c~ for the following maps  the G M A  shift, the J a c o b i - P e r r o n  
shift, and G C F P .  These a lgor i thms are defined in detail at  the end of 
Section 3. 

Fo r  the case of two irrationals,  there are three Oseledec eigenvalues of 
the Euclidean algori thm, J~l > 1 > 2 2 ) J ~  3 with 2 1 2 2 2 3  = 1. There  are two 
eigenvatues of the associated shift cr~ ~> o2. They are related to the 2's by 
a~ = 2~/23 and cr 2 = 21/22. In our  numerical  procedure,  we evaluate In ol  
and the K o l m o g o r o v  Sinai en t ropy  of the associated shift h. This is enough 
informat ion  to determine all the eigenvalues. 

O u r  results are displayed in Table  I. Ten million i terations were 
carried out  to complete  the table for G M A  and JP. For  G C F P ,  one million 
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Tab le  I. 

Baldwin 

Results of  Numer ica l  S i m u l a t i o n  o f  Three  M u l t i d i m e n s i o n a l  
Cont inued-Fract ion A l g o r i t h m s  a 

Algorithm 21 /~2 ,;~3 In a~ Separation Entropy a 

GMA 1.200 0.9318 0.8942 0.2941 0�9 0.5475 1.387 
GCFP 1.868 0.7852 0.6818 1.008 0�9 1.875 1.387 
JP 3.322 0.6386 0.4173 1.953 0.1518 3.602 1.374 
JP (ordered) 5.173 0.6312 0.3062 2.827 0.3616 4.931 1.280 

a Defined in Section 3. The numerical procedure determines In a 1 and h, the KS entropy. The 
other quantities are related to these quantities by simple relations, such as Eqs. (5.1)-(5.5). 
None of the algorithms attain the upper bound of ~ = 3/2, which is a necessary criterion of 
algorithms having best approximation properties. 

iterations were used (since convergence is quite fast)�9 The entropy for 
GMA calculated here numerically as a time average corroborates nicely 
with the result found from considering a phase average in ref. 1 and per- 
forming a single integral. Thus, we have a useful check for our numerical 
procedure. In summary, we estimate the uncertainty for the quantities in 
Table I to be bounded by a few parts per ten thousand. 

All the quantities in the table may be expressed as a function of h and 
In 0"1. These are the quantities which fall out naturally in the numerical 
simulation. The eigenvalue 21 is related to the entropy as 

21 = e h/3 (5 .1)  

We have defined "separation" to be 

�9 1 a l  1 
separation = ~ In --O'2 ~- In 0"1 - -  ~ h (5.2) 

The quantity "separation" is informative. For  an algorithm with best 
approximation properties, this quantity must vanish. As discussed in 
Section 4, 

We can also construct 22 and 23: 

22 = exp(ln al - 2h/3) (5.4) 

23 = exp( - I n  0-1 + h/3) (5.5) 

Although JP has a much higher 21 than GMA, its c~ is smaller, 
implying that the convergents it lists are not as good as those of GMA. 
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Very roughly, we should think that the )h is so large that we are speeding 
by better convergents. GMA provides a slower, more thorough search. 
G CF P  has the same ~ as that for GMA, because G C F P  lists convergents 
which are a subsequence of GMA. This verifies the reparametrization 
invariance of Proposition 2. 

We have presented the first calculations of the convergence exponents 
for some well-known MCFAs. The results presented here reflect the 
necessity of developing algorithms for approximating numbers with best 
approximation properties. 

PROOF OF PROPOSIT ION 4 

The claim of Proposition 4 is that 

- I n  dist(~, f~L) ln(1/22) 
lim - ~ =  1 + - -  (A.1) 

,,~ ~ In IPLI In 21 

where p~c~ is a d-dimensional integer vector P~L)=(A L ..... ZL) with 
A c <  " - - < Z L  and ~ c =  (AL/Z L, BL/ZL,..., YL/ZL) is a (d -1 ) -d imen-  
sional vector. 

How is the vector f~c constructed? Let (ao, al,..., ao~) be the symbol 
sequence for l'~ in terms of the shift map T. That is, for each ai, the 
function (Tai)- ~ is a well-defined mapping of the invariant set into a subset 
of that set. For example with GMA, ~1) any irrational vector could be 
expressed in terms of a binary sequence (such as 0100). That is, 
T ( x , y ) = T o ( x , y ) = ( x / y , ( 1 - x ) / y )  if x<~l/2. If x > l / 2 ,  T ( x , y ) =  
T I ( X  , .y)= ((l--x)/y, x/y), and we record whether we use To or TI in the 
binary string. The function To maps 0 < 1 - y < x ~< 1/2 to the invariant set, 
O < l - y < x ~ < y .  The function T~ maps 1 / 2 < x < y < l  to the same 
invariant set. Thus (Ta) -1, ale (0, 1}, is a well-defined and continuous 
mapping. 

The convergents ~2 L then are simply 

~ L  = (Tao) 1 (Tal)  1 . . .  (Tat)-1 p (A.2)  

where p is a point in the invariant set [for GMA and d =  3, p =  (1/2, 1/2); 
any point whose inverse images form an ergodic trajectory throughout the 
invariant set will do].  Equation (A.2) is clear, since 

f~= lim (Ta0) - 1 . . .  (Tau) 1 p (A.3) 
N ~  
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that is, f~ and ~L share the first L letters of the symbol sequence. Now 
using (A.1), we proceed to calculate 

-1 /1  1 
= lim In dist(~, Y~L) i moo ~r  In ]PM] 

t ~ o o T  
(A.4) 

1 - 1  
- l i m  In dist(~, a L )  (A.5) 

In 21 L 

1 - 1  
= l n 2 ~ j i m ~  L l n d i s t ( ( T ~ ~  ~PL'(T'~ l ' ' ' (TaL) - lP)  

(A.6) 

where 

PL = T r ~  = T.~ .-- T~oF~ (A.7) 

Equation (A.5) follows from (A.4) because 
denominators so that ( l /M)  In PM ~ In 21 . 

Now define fL = (Tao) - 1 . . .  (T,L) 1. Then 

PM scales with the 

1 - 1  
c~ = 7---7-~ l im  In dist(fL(pL), fL(p)) (A.8) 

In,41 L ~  L 

To consider the idea of the proof, let us consider the case where p and 
f c  have one component, and the distance function is the normal Euclidean 
distance. Then we have from (A.8) 

1 2 -1 
= 1~-[1 ~ In IfL(PL) --fc(P)l (A.9) 

By the intermediate value theorem there is a point PL between p and 
PL such that 

fL(PL)- - fL(P)  = ( P L - - P ) - -  (A.10) 

Then we have from (A.9) and (A.8) 

The first term in parentheses is zero, since Pc and p are not necessarily 
points in the invariant set that are close to one another. The second term 
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is the negative of the Oseledec exponent  of the mapp ing  T 1, which yields 
precisely in 0-1 = ln(21/22). So 

ln(2~/22) ln(1/s 
= - -  - 1 + - -  (A.12) 

In 21 In "~1 

Actually, since we consider here d =  2, 22 = 1/21 and e = 2. 
The  idea in general dimensions is quite the same. Unfor tunate ly ,  there 

is no mul t id imensional  version of the intermediate  value theorem that  we 
m a y  use, so that  our  answer  falls out  so conveniently as it did above. Let 
us define the equivalence relat ion _~ as follows: AL ~-- BL means  that  

Consider  a te rm 

lim AL--BL lim A L - B ~ = o  
L ~ oo A L L ~ ov B L 

a( f  L(p'~ ) ), 
e(Pk)j 

(A.13) 

where all the (PL)k except k = j  are held constant.  Remember  that  fL is a 
m app ing  of a ( d - 1 ) - d i m e n s i o n a l  vector  to a ( d - 1 ) - d i m e n s i o n a l  vector  
and (fL)i is the i th c o m p o n e n t  of this vector. N o w  

In ~ ' (fL(PL))~ __ In O(fL(PL))C (A.14) 
0(pDj ~(pD/ 

Tha t  is, as L gets large, both  terms on left and right become of order  L, 
with the difference being a constant  of order  unity, regardless of the values 
of i, i ', j ,  j ' .  The  reason is that  every c o m p o n e n t  of fL is behaving to the 
initial condit ions in essentially the same manne r  (see below: Kubo) .  Let us 
return to (A.8) and consider the usual Euclidean distance function. All 
c o m m o n  distance functions will have the same ~. Considering (A.8) and  
(A.14) and a similar appl icat ion of the in termediate  value theorem,  one 
s ta ightforwardly derives 

ct = - 1 1 In 0(fL(P))I  
In ~1 Ji~m~176 ~ ~LI (A.15) 

for some p~ in the invar iant  set. Now,  the limit in (A.15) is s imply the 
Kubo- l ike  expression (9) for the largest exponent  (essentially the formula  we 
use in our  numerical  work  to calculate the largest eigenvalue). Since 

f L ( P t L )  = ( T a o )  1 . . .  ( T a L )  1 P L  (A.16) 
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Then 

ct = ~ In(largest eigenvalue of the T 1 string) (A.17) 

The largest eigenvalue of  T -  1 is the inverse of the smallest eigenvalue of T, 
the latter being 21/22 by Proposi t ion  3. Thus, 

ln(2,/22) 1 ln(1/22) 
- - 1 + -  (A.18) 

In 21 In 21 

Propos i t ion  4 is proved. 
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